Confocal Raman microscopy, a technique that marries the spatial precision of microscopy with the chemical specificity of Raman spectroscopy, has emerged as a pivotal tool in microanalysis. This method facilitates non-destructive three-dimensional analysis, offering insights into the chemical composition and structure of materials at a microscale.
The refractive index (RI) is an inherent trait that depicts how light navigates within a material. It provides insight into how much the light's speed is altered as it moves through a specific medium. When expressed mathematically, the refractive index (n) represents the relationship between the speed of light in a vacuum (c) and its speed within the material (v): n = c/v.
Quantifying tiny amounts of a chemical substance can pose a big challenge. It is often easier to identify and quantify the composition of materials at a macro scale. But nanotechnology mandates the need to get deeper insights at smaller scales. Microanalysis is pivotal in this arena. Chemists have long deployed microanalytical techniques to characterise samples by observing minuscule phenomena. This is essential in an age where many materials we use are invisible to conventional optics.
Organic light-emitting diode (OLED) devices pervade modern technology. You can find them on the high street, in homes, and even in the pockets of most consumers. Demand is such that the global OLED industry topped $37.6 billion in recent years. Meeting demand with supply represents an enormous challenge. But manufacturers have a suite of analytical tools available for both R&D and QA/QC. One of those tools is Raman spectroscopy. This non-invasive analytical technique is instrumental in advancing QA/QC of OLED displays - enabling scientists to examine the interaction between light and matter post-scattering. However, this is just a part of the story.
Photoluminescence microspectroscopy has a crucial part in scientific research as it enables researchers to study the light emission properties of materials at a microscopic level. By analyzing the intensity and characteristics of photoluminescence, scientists can obtain comprehensive insights into the behavior of electrons, energy transitions, and excited states. This analytical technique is also used to characterize the electrical and optical properties of semiconductors and other materials. This blog post will discuss some key challenges of photoluminescence microspectroscopy and offer solutions.